
Probability
DATA 606 - Statistics & Probability for Data Analytics

Jason Bryer, Ph.D., Angela Lui, Ph.D., and George Hagstrom, Ph.D.
September 25, 2024

What was the most important thing you
learned during this class?

What important question remains
unanswered for you?

One Minute Paper Results

2 / 27

Probability

There are two key properties of probability models:

1. P(A) = The probability of event A
2.

This semester we will examine two interpretations of probabilty:

Frequentist interpretation: The probability of an outcome is the proportion of times the
outcome would occur if we observed the random process an infinite number of times.

Bayesian interpretation: A Bayesian interprets probability as a subjective degree of belief: For
the same event, two separate people could have different viewpoints and so assign different
probabilities. Largely popularized by revolutionary advance in computational technology and
methods during the last twenty years.

0 ≤ P(A) ≤ 1

3 / 27

Law of Large Numbers

Law of large numbers states that as more observations are collected, the proportion of
occurrences with a particular outcome, , converges to the probability of that outcome, .

When tossing a fair coin, if heads comes up on each of the first 10 tosses, what do you think the
chance is that another head will come up on the next coin toss? 0.5, less 0.5, or greater 0.5?

When tossing a fair coin, if heads comes up on each of the first 10 tosses, what do you think the
chance is that another head will come up on the next coin toss? 0.5, less 0.5, or greater 0.5?

The probability is still 0.5, or there is still a 50% chance that another head will come up on the next toss.
The coin is not "due"" for a tail.
The common misunderstanding of the LLN is that random processes are supposed to compensate for whatever happened
in the past; this is just not true and is also called gambler’s fallacy (or law of averages).

p̂n p

4 / 27

Coin Toss Demo
library(DATA606)

shiny_demo('gambler')

5 / 27

https://r.bryer.org/shiny/gambler/
https://r.bryer.org/shiny/gambler/

Coin Tosses
coins <- sample(c(-1,1), 1000, replace=TRUE)

plot(1:length(coins), cumsum(coins), type='l')

abline(h=0)

6 / 27

Coin Tosses (Full Range)
plot(1:length(coins), cumsum(coins), type='l', ylim=c(-1000, 1000))

abline(h=0)

7 / 27

Disjoint and non-disjoint outcomes

Disjoint (mutually exclusive) outcomes: Cannot happen at the same time.

The outcome of a single coin toss cannot be a head and a tail. A student both cannot fail and pass a class.
A single card drawn from a deck cannot be an ace and a queen.

Non-disjoint outcomes: Can happen at the same time.

A student can get an A in Stats and A in Econ in the same semester.

8 / 27

Probability Distributions

A probability distribution lists all possible events and the probabilities with which they occur.

The probability distribution for the a coin toss:

Event Heads Tails

Probability 0.5 0.5

Rules for probability distributions:

1. The events listed must be disjoint
2. Each probability must be between 0 and 1
3. The probabilities must total 1

9 / 27

Probabilty Distrubtions (cont.)

The probability distribution for two coin tosses:

Event HH TT HT TH

Probability 0.25 0.25 0.25 0.25

10 / 27

Independence

Two processes are independent if knowing the outcome of one provides no useful information
about the outcome of the other.

Knowing that the coin landed on a head on the first toss does not provide any useful
information for determining what the coin will land on in the second toss. → Outcomes of
two tosses of a coin are independent.

Knowing that the first card drawn from a deck is an ace does provide useful information for
determining the probability of drawing an ace in the second draw. → Outcomes of two draws
from a deck of cards (without replacement) are dependent.

11 / 27

Checking for Independence

If P(A occurs, given that B is true) = P(A | B) = P(A), then A and B are independent.

P(protects citizens) = 0.58
P(randomly selected NC resident says gun ownership protects citizens, given that the resident is white) = P(protects
citizens | White) = 0.67
P(protects citizens | Black) = 0.28
P(protects citizens | Hispanic) = 0.64

P(protects citizens) varies by race/ethnicity, therefore opinion on gun ownership and race
ethnicity are most likely dependent.

12 / 27

Random Variables

A random variable is a numeric quantity whose value depends on the outcome of a random
event

We use a capital letter, like X, to denote a random variable
The values of a random variable are denoted with a lowercase letter, in this case x
For example, P(X = x)

There are two types of random variables:

Discrete random variables often take only integer values
Example: Number of credit hours, Difference in number of credit hours this term vs last

Continuous random variables take real (decimal) values
Example: Cost of books this term, Difference in cost of books this term vs last

13 / 27

Lottery
library(DATA606)

shiny_demo('lottery')

14 / 27

https://r.bryer.org/shiny/lottery/
https://r.bryer.org/shiny/lottery/

Expectation
We are often interested in the average outcome of a random variable.
We call this the expected value (mean), and it is a weighted average of the possible outcomes

μ = E(X) =
k

∑
i=1

xiP(X = xi)

15 / 27

Expected value of a discrete random variable

In a game of cards you win $1 if you draw a heart, $5 if you draw an ace (including the ace of
hearts), $10 if you draw the king of spades and nothing for any other card you draw. Write the
probability model for your winnings, and calculate your expected winning.

Event X P(X) X P(X)

Heart (not Ace) 1 12/52 12/52

Ace 5 4/52 20/52

King of Spades 10 1/52 10/52

All else 0 35/52 0

Total E(X) = ≈ 0.8142
52

16 / 27

Expected value of a discrete random variable
cards <- data.frame(Event = c('Heart (not ace)','Ace','King of Spades','All else'),

 X = c(1, 5, 10, 0), pX = c(12/52, 5/52, 1/52, 32/52))

cards$XpX <- cards$X * cards$pX

cards2 <- rep(0, 11)

cards2[cards$X + 1] <- cards$pX

names(cards2) <- 0:10

barplot(cards2, main='Probability of Winning Game')

17 / 27

Estimating Expected Values with Simulations
tickets <- as.data.frame(rbind(

 c('$1', 1, 15),

 c('$2', 2, 11),

 c('$4', 4, 62),

 c('$5', 5, 100),

 c('$10', 10, 143),

 c('$20', 20, 250),

 c('$30', 30, 562),

 c('$50', 50, 3482),

 c('$100', 100, 6681),

 c('$500', 500, 49440),

 c('$1500', 1500, 375214),

 c('$2500', 2500, 618000)

), stringsAsFactors=FALSE)

names(tickets) <- c('Winnings', 'Value', 'Odds')

tickets$Value <- as.integer(tickets$Value)

tickets$Odds <- as.integer(tickets$Odds)

18 / 27

m <- 618000 * 375214 # A multiple of all odds

odds <- sample(m, 1000, replace=TRUE)

vals <- rep(-1, length(odds))

for(i in 1:nrow(tickets)) {

 vals[odds %% tickets[i,'Odds'] == 0] <-

 tickets[i,'Value'] - 1

}

head(vals, n=10)

[1] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

mean(vals)

[1] -0.466

ggplot(data.frame(Winnings=vals), aes(x=Winnings)) +

 geom_bar(binwidth=1)

Estimating Expected Values with Simulations

19 / 27

tickets

Winnings Value Odds xPx

1 $1 1 15 0.066666667

2 $2 2 11 0.181818182

3 $4 4 62 0.064516129

4 $5 5 100 0.050000000

5 $10 10 143 0.069930070

6 $20 20 250 0.080000000

7 $30 30 562 0.053380783

8 $50 50 3482 0.014359563

9 $100 100 6681 0.014967819

10 $500 500 49440 0.010113269

11 $1500 1500 375214 0.003997719

12 $2500 2500 618000 0.004045307

Expected value for one ticket

sum(tickets$xPx) - 1

[1] -0.3862045

Expected Value of Lottery Example

μ = E(X) =
k

∑
i=1

xiP(X = xi)

20 / 27

Expected Value of Lottery Example (cont)
sum(tickets$xPx) - 1 # Expected value for one ticket

[1] -0.3862045

Simulated

nGames <- 1

runs <- numeric(10000)

for(j in seq_along(runs)) {

 odds <- sample(max(tickets$Odds), nGames, replace = TRUE)

 vals <- rep(-1, length(odds))

for(i in 1:nrow(tickets)) {

 vals[odds %% tickets[i,'Odds'] == 0] <- tickets[i,'Value'] - 1

 }

 runs[j] <- cumsum(vals)[nGames]

}

mean(runs)

[1] -0.4015

21 / 27

Note on Randomization in R

We will use many different functions throughout the course to randomly generate data. The first
is the sample function. This function simply randomly samples from the first parameter. Consider
the letters vector containing the 26 letters of the alphabet. Calling sample with just that vector
will shuffle the vector.

letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"

[20] "t" "u" "v" "w" "x" "y" "z"

sample(letters)

[1] "o" "i" "b" "s" "u" "h" "f" "p" "v" "y" "n" "x" "t" "j" "w" "q" "l" "c" "m"

[20] "g" "a" "e" "r" "z" "d" "k"

22 / 27

Note on Randomization in R (cont.)

You can specify how many you want to return with the size parameter.

sample(letters, size = 1)

[1] "e"

The replace will ensure that each randomly selected value is independent of the others.

sample(letters, size = 30, replace = TRUE)

[1] "d" "p" "n" "y" "v" "g" "k" "w" "d" "j" "b" "n" "b" "c" "y" "f" "f" "b" "d"

[20] "q" "i" "r" "g" "b" "g" "c" "d" "b" "m" "s"

23 / 27

Coins Example
coin <- c('H', 'T')

sample(coin)

[1] "T" "H"

sample(coin, 1)

[1] "H"

sample(coin, 100, replace = TRUE)

[1] "H" "H" "H" "H" "H" "H" "H" "H" "T" "T" "T" "H" "H" "T" "H" "T" "T" "T"

[19] "H" "H" "T" "H" "H" "T" "H" "T" "H" "H" "H" "T" "T" "T" "T" "H" "H" "H"

[37] "H" "T" "T" "H" "H" "H" "H" "H" "H" "H" "T" "T" "H" "H" "T" "H" "H" "T"

[55] "H" "T" "H" "H" "T" "H" "H" "H" "H" "T" "H" "H" "T" "H" "H" "H" "H" "H"

[73] "H" "T" "H" "T" "T" "T" "H" "H" "H" "H" "H" "T" "H" "T" "H" "T" "T" "H"

[91] "H" "T" "T" "T" "T" "T" "H" "T" "T" "H"

24 / 27

Seeds

Computers are generally not good at randomizaiton. Instead, R (and really all programs) uses a
pseudo random algorithm. These algorithms rely on a seed, or starting point for the algorithm.
You can set the seed to ensure that your analysis is reproducible. For example, setting the seed
below before calling sample will ensure we get the same answer.

set.seed(2112); sample(100, 1)

[1] 6

set.seed(2112); sample(100, 1)

[1] 6

25 / 27

https://en.wikipedia.org/wiki/Pseudorandomness

ggplot(df, aes(x = x, y = y)) + geom_point() cor.test(dfx, dfy)

Pearson's product-moment correlation

data: df$x and df$y

t = -0.11161, df = 998, p-value = 0.9112

alternative hypothesis: true correlation is not equa

95 percent confidence interval:

-0.06551171 0.05847292

sample estimates:

cor

-0.003532972

Is it really random?
df <- data.frame(x = 1:1000, y = NA_integer_)

for(i in 1:nrow(df)) {

 set.seed(i)

 df[i,]$y <- sample(100, 1)

}

26 / 27

1. What was the most important thing
you learned during this class?

2. What important question remains
unanswered for you?

One Minute Paper

https://forms.gle/ESBAdHRhzT65fW6c6

27 / 27

https://forms.gle/ESBAdHRhzT65fW6c6

