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Midterm

Available on October 16th

Due October 20th (by midnight)

Covers chapters 1 through 5.

20 multiple choice questions.

You may use your notes, textbook, and course site. Do not consult with anyone else.

2 / 63



What was the most important thing you
learned during this class?

What important question remains
unanswered for you?

One Minute Paper Results
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Crash Course in Calculus
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Crash Course in Calculus
There are three major concepts in calculus that will be helpful to understand:

Limits - the value that a function (or sequence) approaches as the input (or index) approaches some
value.

Derivatives - the slope of the line tangent at any given point on a function.

Integrals - the area under the curve.
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Derivatives
Source: @allison_horst
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Function for Normal Distribution

f <- function(x, mean = 0, sigma = 1) {

1 / (sigma * sqrt(2 * pi)) * exp(1)^(-1/2 * ( (x - mean) / sigma )^2)

}

min <- 0; max <- 2

ggplot() + stat_function(fun = f) + xlim(c(-4, 4)) + 

    geom_vline(xintercept = c(min, max), color = 'blue', linetype = 2) + xlab('x')

f (x|μ,σ) = e
−1

σ√2π

(x−μ)2

2σ2
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Reimann Sums

One strategy to �nd the area between two values is to draw a series of rectangles. Given n
rectangles, we know that the width of each is  and the height is . Here is an example with
3 rectangles.

2−0
n f(x)
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Reimann Sums (10 rectangles)
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Reimann Sums (30 rectangles)
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Reimann Sums (300 rectangles)
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As n approaches in�nity we are going to get the exact value for the area under the curve. This
notion of letting a value get increasingly close to in�nity, zero, or any other value, is called the
limit.

The area under a function is called the integral.

integrate(f, 0, 2)

## 0.4772499 with absolute error < 5.3e-15

DATA606::shiny_demo('calculus')

n → ∞
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Normal Distribution
normal_plot(cv = c(0, 2))

pnorm(2) - pnorm(0)

## [1] 0.4772499
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R's built in functions for working with distributions

See https://github.com/jbryer/DATA606Fall2021/blob/master/R/distributions.R 22 / 63
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Population Distribution (Uniform)
n <- 1e5

pop <- runif(n, 0, 1)

mean(pop)

## [1] 0.5007384
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Random Sample (n=10)
samp1 <- sample(pop, size=10)

mean(samp1)

## [1] 0.68048

hist(samp1)
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Random Sample (n=30)
samp2 <- sample(pop, size=30)

mean(samp2)

## [1] 0.5075351

hist(samp2)
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Lots of Random Samples
M <- 1000

samples <- numeric(length=M)

for(i in seq_len(M)) {

    samples[i] <- mean(sample(pop, size=30))

}

head(samples, n=8)

## [1] 0.5361295 0.6190336 0.6321650 0.4491749 0.5169693 0.4721891 0.4245590

## [8] 0.5266570
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Sampling Distribution
hist(samples)
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Central Limit Theorem (CLT)

Let , , ...,  be independent, identically distributed random variables with mean  and
variance , both �nite. Then for any constant ,

where  is the cumulative distribution function (cdf) of the standard normal distribution.

X1 X2 Xn μ

σ2 z

lim
n→∞

P ( ≤ z) = Φ(z)
X̄ − μ

σ/√n

Φ
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In other words...

The distribution of the sample mean is well approximated by a normal model:

where SE represents the standard error, which is de�ned as the standard deviation of the
sampling distribution. In most cases  is not known, so use .

x̄ ∼ N (mean = μ,SE = )σ

√n

σ s
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CLT Shiny App
library(DATA606)

shiny_demo('sampdist')

shiny_demo('CLT_mean')
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Standard Error
samp2 <- sample(pop, size=30)

mean(samp2)

## [1] 0.5598745

(samp2.se <- sd(samp2) / sqrt(length(samp2)))

## [1] 0.05100245
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Con�dence Interval

The con�dence interval is then  where CV is the critical value. For a 95% con�dence
interval, the critical value is ~1.96 since

qnorm(0.025) # Remember we need to consider the two tails, 2.5% to the left, 2.5% to the right.

## [1] -1.959964

(samp2.ci <- c(mean(samp2) - 1.96 * samp2.se, mean(samp2) + 1.96 * samp2.se))

## [1] 0.4599097 0.6598393

μ± CV × SE

∫ 1.96

−1.96
d
− ≈ 0.95

1

σ√2π

(x−μ)2

2σ2
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Con�dence Intervals (cont.)

We are 95% con�dent that the true population mean is between 0.4599097, 0.6598393.

That is, if we were to take 100 random samples, we would expect at least 95% of those samples to
have a mean within 0.4599097, 0.6598393.

ci <- data.frame(mean=numeric(), min=numeric(), max=numeric())

for(i in seq_len(100)) {

    samp <- sample(pop, size=30)

    se <- sd(samp) / sqrt(length(samp))

    ci[i,] <- c(mean(samp),

                mean(samp) - 1.96 * se, 

                mean(samp) + 1.96 * se)

}

ci$sample <- 1:nrow(ci)

ci$sig <- ci$min < 0.5 & ci$max > 0.5
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Con�dence Intervals
ggplot(ci, aes(x=min, xend=max, y=sample, yend=sample, color=sig)) + 

    geom_vline(xintercept=0.5) + 

    geom_segment() + xlab('CI') + ylab('') +

    scale_color_manual(values=c('TRUE'='grey', 'FALSE'='red'))
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Null Hypothesis Testing
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Hypothesis Testing

We start with a null hypothesis (  ) that represents the status quo.

We also have an alternative hypothesis (  ) that represents our research question, i.e. what
we're testing for.

We conduct a hypothesis test under the assumption that the null hypothesis is true, either
via simulation or traditional methods based on the central limit theorem.

If the test results suggest that the data do not provide convincing evidence for the alternative
hypothesis, we stick with the null hypothesis. If they do, then we reject the null hypothesis in
favor of the alternative.

H0

HA
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Hypothesis Testing (using CI)

: The mean of samp2  = 0.5
: The mean of samp2   0.5

Using con�dence intervals, if the null value is within the con�dence interval, then we fail to reject
the null hypothesis.

(samp2.ci <- c(mean(samp2) - 1.96 * sd(samp2) / sqrt(length(samp2)),

               mean(samp2) + 1.96 * sd(samp2) / sqrt(length(samp2))))

## [1] 0.4599097 0.6598393

Since 0.5 fall within 0.4599097, 0.6598393, we fail to reject the null hypothesis.

H0

HA ≠
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Hypothesis Testing (using p-values)

pnorm(-.204) * 2

## [1] 0.8383535

x̄ ∼ N (mean = 0.49,SE = )0.27

√30 = 0.049

Z = = = −.204081633
x̄− null

SE

0.49 − 0.50
0.049
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Hypothesis Testing (using p-values)
DATA606::normal_plot(cv = c(.204), tails = 'two.sided')
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Type I and II Errors

There are two competing hypotheses: the null and the alternative. In a hypothesis test, we make
a decision about which might be true, but our choice might be incorrect.

fail to reject H0 reject H0

H0 true ✔ Type I Error

HA true Type II Error ✔

Type I Error: Rejecting the null hypothesis when it is true.
Type II Error: Failing to reject the null hypothesis when it is false.
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Hypothesis Test

If we again think of a hypothesis test as a criminal trial then it makes sense to frame the verdict
in terms of the null and alternative hypotheses:

H0 : Defendant is innocent
HA : Defendant is guilty

Which type of error is being committed in the following circumstances?

Declaring the defendant innocent when they are actually guilty

Type 2 error

Declaring the defendant guilty when they are actually innocent

Type 1 error

Which error do you think is the worse error to make? 42 / 63



Null Distribution
(cv <- qnorm(0.05, mean=0, sd=1, lower.tail=FALSE))

## [1] 1.644854
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Alternative Distribution

pnorm(cv, mean=cv, lower.tail = FALSE)

## [1] 0.5
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mu <- 2.5

(cv <- qnorm(0.05, 

             mean=0, 

             sd=1, 

             lower.tail=FALSE))

## [1] 1.644854

Another Example (mu = 2.5)
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Numeric Values

Type I Error

pnorm(mu, mean=0, sd=1, lower.tail=FALSE)

## [1] 0.006209665

Type II Error

pnorm(cv, mean=mu, lower.tail = TRUE)

## [1] 0.1962351
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Shiny Application

Visualizing Type I and Type II errors: https://bcdudek.net/betaprob/
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Why p < 0.05?

Check out this page: https://r.bryer.org/shiny/Why05/

See also:

Kelly M. Emily Dickinson and monkeys on the stair Or: What is the signi�cance of the 5%
signi�cance level? Signi�cance 10:5. 2013.
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Statistical vs. Practical Signi�cance

Real differences between the point estimate and null value are
easier to detect with larger samples.

However, very large samples will result in statistical
signi�cance even for tiny differences between the sample
mean and the null value (effect size), even when the difference
is not practically signi�cant.

This is especially important to research: if we conduct a study,
we want to focus on �nding meaningful results (we want
observed differences to be real, but also large enough to
matter).

The role of a statistician is not just in the analysis of data, but
also in planning and design of a study.
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Bootstrapping
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Bootstrapping

First introduced by Efron (1979) in Bootstrap Methods: Another Look at the Jackknife.

Estimates con�dence of statistics by resampling with replacement.

The bootstrap sample provides an estimate of the sampling distribution.

The boot  R package provides a framework for doing bootstrapping:
https://www.statmethods.net/advstats/bootstrapping.html
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Bootstrapping Example (Population)

De�ne our population with a uniform distribution.

n <- 1e5

pop <- runif(n, 0, 1)

mean(pop)

## [1] 0.4979416
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Bootstrapping Example (Sample)

We observe one random sample from the population.

samp1 <- sample(pop, size = 50)
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Bootsrapping Example (Estimate)
boot.samples <- numeric(1000) # 1,000 bootstrap samples

for(i in seq_along(boot.samples)) { 

    tmp <- sample(samp1, size = length(samp1), replace = TRUE)

    boot.samples[i] <- mean(tmp)

}

head(boot.samples)

## [1] 0.4683697 0.5187630 0.5037918 0.4993577 0.5655144 0.5647597
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Bootsrapping Example (Distribution)
d <- density(boot.samples)

h <- hist(boot.samples, plot=FALSE)

hist(boot.samples, main='Bootstrap Distribution', xlab="", freq=FALSE, 

     ylim=c(0, max(d$y, h$density)+.5), col=COL[1,2], border = "white", 

     cex.main = 1.5, cex.axis = 1.5, cex.lab = 1.5)

lines(d, lwd=3)
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95% con�dence interval
c(mean(boot.samples) - 1.96 * sd(boot.samples), 

  mean(boot.samples) + 1.96 * sd(boot.samples))

## [1] 0.4072915 0.5798639
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Bootstrapping is not just for means!
boot.samples.median <- numeric(1000) # 1,000 bootstrap samples

for(i in seq_along(boot.samples.median)) { 

    tmp <- sample(samp1, size = length(samp1), replace = TRUE)

    boot.samples.median[i] <- median(tmp) # NOTICE WE ARE NOW USING THE median FUNCTION!

}

head(boot.samples.median)

## [1] 0.5937338 0.6232100 0.3001939 0.5893443 0.4823418 0.6106666

95% con�dence interval for the median

c(mean(boot.samples.median) - 1.96 * sd(boot.samples.median), 

  mean(boot.samples.median) + 1.96 * sd(boot.samples.median))

## [1] 0.3509326 0.6684672
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Review
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Review: Sampling Distribution

59 / 63



Review: Sampling Distribution
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Review: Sampling Distribution
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Review: Add Bootstrap Distribution
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�. What was the most important thing
you learned during this class?

�. What important question remains
unanswered for you?

One Minute Paper

https://forms.gle/ESBAdHRhzT65fW6c6
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