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What was the most important thing you
learned during this class?

What important question remains
unanswered for you?

One Minute Paper Results
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Announcements

The mid-term exam has been posted to Blackboard.

It is due October 20th by midnight.
20 multiple choice questions.
May use your book and notes. Do not consult with other students.
Good luck!

Missing Data.

If you encounter missing data in the labs or your project it is ok to remove them for this class.
In general, removing missing data is not advisable, instead you can impute. There are two packages that do a good job for
imputation: mice  (my preferred package) and Amelia .
Do not do mean/median/mode imputation!

The infer  package.

Labs 6 and 7 will make use of the infer  package.
Package website: https://infer.tidymodels.org
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https://github.com/amices/mice
https://gking.harvard.edu/amelia
https://infer.tidymodels.org/


Example

Two scientists want to know if a certain drug is effective against high blood pressure. The first
scientist wants to give the drug to 1,000 people with high blood pressure and see how many of
them experience lower blood pressure levels. The second scientist wants to give the drug to 500
people with high blood pressure, and not give the drug to another 500 people with high blood
pressure, and see how many in both groups experience lower blood pressure levels. Which is the
better way to test this drug?

500 get the drug, 500 don't
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Survey of Americans

The GSS asks the same question, below is the distribution of responses from the 2010 survey:

Response n

All 1000 get the drug 99

500 get the drug 500 don't 571

Total 670
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Parameter of Interest

Parameter of interest: Proportion of all Americans who have good intuition about
experimental design.

Point estimate: Proportion of sampled Americans who have good intuition about
experimental design.

p(population proportion)

p̂(sample proportion)
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Inference for a proportion

What percent of all Americans have good intuition about experimental design (i.e. would answer
"500 get the drug 500 don't?"

Using a confidence interval

We know that ME = critical value x standard error of the point estimate.

point estimate±ME

SEp̂ =√ p(1 − p)
n
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Central limit theoreom for proportions

Sample proportions will be nearly normally distributed with mean equal to the population mean,

p, and standard error equal to .

This is true given the following conditions:

independent observations
at least 10 successes and 10 failures

√ p(1−p)
n

p̂ ∼ N (mean = p,SE =√ )p(1 − p)
n
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Let's consider a population of 1,000,000 where the true
proportion is 0.85.

pop_prop <- 0.85

N <- 1000000

pop <- c(rep(0, N * (1 - pop_prop)), 

         rep(1, N * pop_prop))

We can estimate the sampling distribution by taking
1,000 random samples of size 30.

n <- 670

samp_dist <- numeric(1000)

for(i in 1:length(samp_dist)) {

    samp_dist[i] <- sample(pop, size = n) |> mean()

}

Calculate the standard error using one sample.

samp_se <- sqrt((0.85 * (1 - 0.85)) / 670)

The figure represents the sampling distribution. The
blue line is from the estimated sampling distribution.
The green line is from the one sample (i.e using the SE
formula).

Simulating the CLT
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Back to the Survey
571 out of 670 (85%) of Americans answered the question on experimental design correctly.
Estimate (using a 95% confidence interval) the proportion of all Americans who have good intuition about experimental
design?

Given: , .

Conditions:

1. Independence: The sample is random, and 670 < 10% of all Americans, therefore we can
assume that one respondent's response is independent of another.

2. Success-failure: 571 people answered correctly (successes) and 99 answered incorrectly
(failures), both are greater than 10.

n = 670 p̂ = 0.85
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Calculating Confidence Interval

Given: , .

We are 95% confidence the true proportion of Americans that have a good intuition about
experimental designs is betwee 82% and 88%.

n = 670 p̂ = 0.85

0.85 ± 1.96√ = (0.82, 0.88)
0.85 × 0.15

670
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How many should we sample?

Suppose you want a 3% margin of error, how many people would you have to survey?

Use 

If you don't know any better, 50-50 is a good guess
 gives the most conservative estimate - highest possible sample size

p̂ = 0.5

p̂ = 0.5

0.03 = 1.96 ×√ 0.5 × 0.5
n

0.032 = 1.962 ×
0.5 × 0.5

n

n ≈ 1, 068
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Choosing a sample size
How many people should you sample in order to cut the margin of error of a 95% confidence interval
down to 1%?

Using  from previous slides.

n needs to be at least 4,899 to have a 1% margin of error.

ME = z∗ × SE

p̂

0.01 ≥ 1.96 ×√ 0.85 × 0.15
n

0.012 ≥ 1.962 ×
0.85 × 0.15

n

n ≥
1.962 × 0.85 × 0.15

0.012

n ≥ 4, 898.04
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Example: Two Proportions

Scientists predict that global warming may have big effects on the polar regions within the next
100 years. One of the possible effects is that the northern ice cap may completely melt. Would
this bother you a great deal, some, a little, or not at all if it actually happened?

Response GSS Duke

A great deal 454 69

Some 124 40

A little 52 4

Not at all 50 2

Total 680 105
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Parameter and Point Estimate

Parameter of interest: Difference between the proportions of all Duke students and all Americans
who would be bothered a great deal by the northern ice cap completely melting.

Point estimate: Difference between the proportions of sampled Duke students and sampled
Americans who would be bothered a great deal by the northern ice cap completely melting.

pDuke − pUS

p̂Duke − p̂US
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Everything else is the same...
CI: 

HT: 

Standard error of the difference between two sample proportions

Conditions:

1. Independence within groups: The US group is sampled randomly and we're assuming that the Duke group represents a
random sample as well.  of all Duke students and  of all Americans.

2. Independence between groups: The sampled Duke students and the US residents are independent of each other.
3. Success-failure: At least 10 observed successes and 10 observed failures in the two groups.

point estimate±margin of error

Z = point estimate−null value
SE

SEp̂1−p̂2 =√ +
p1 (1 − p1)

n1

p2 (1 − p2)
n2

nDuke < 10% 680 < 10%
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95% Confidence Interval
Construct a 95% confidence interval for the difference between the proportions of Duke students and Americans who
would be bothered a great deal by the melting of the northern ice cap (  ).

Data Duke US

A great deal 69 454

Not a great deal 36 226

Total 105 680

0.657 0.668

pDuke − pUS

p̂

(p̂Duke − p̂US) ± z ∗ ×√ +
pDuke (1 − pDuke)

nDuke

pUS (1 − pUS)
nUS

(0.657 − 0.668) ± 1.96 ×√ + = (−0.108, 0.086)
0.657 × 0.343

105
0.668 × 0.332

680
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Weldon's dice

Walter Frank Raphael Weldon (1860 - 1906), was an English evolutionary biologist and a
founder of biometry. He was the joint founding editor of Biometrika, with Francis Galton and
Karl Pearson.

In 1894, he rolled 12 dice 26,306 times, and recorded the number of 5s or 6s (which he
considered to be a success).

It was observed that 5s or 6s occurred more often than expected, and Pearson hypothesized that this was probably
due to the construction of the dice. Most inexpensive dice have hollowed-out pips, and since opposite sides add to 7,
the face with 6 pips is lighter than its opposing face, which has only 1 pip.
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Labby's dice

In 2009, Zacariah Labby (U of Chicago), repeated Weldon’s experiment using a homemade dice-
throwing, pip counting machine. http://www.youtube.com/watch?v=95EErdouO2w

The rolling-imaging process took about 20 seconds per roll.
Each day there were ∼150 images to process manually.
At this rate Weldon’s experiment was repeated in a little more than six full days.
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http://www.youtube.com/watch?v=95EErdouO2w


Summarizing Labby's results

The table below shows the observed and expected counts from Labby's experiment.

Outcome Observed Expected

1 53,222 52,612

2 52,118 52,612

3 52,465 52,612

4 52,338 52,612

5 52,244 52,612

6 53,285 52,612

Total 315,672 315,672
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Setting the hypotheses

Do these data provide convincing evidence of an inconsistency between the observed and
expected counts?

: There is no inconsistency between the observed and the expected counts. The observed
counts follow the same distribution as the expected counts.

: There is an inconsistency between the observed and the expected counts. The observed
counts do not follow the same distribution as the expected counts. There is a bias in which
side comes up on the roll of a die.

H0

HA
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Evaluating the hypotheses

To evaluate these hypotheses, we quantify how different the observed counts are from the
expected counts.

Large deviations from what would be expected based on sampling variation (chance) alone
provide strong evidence for the alternative hypothesis.

This is called a goodness of fit test since we're evaluating how well the observed data fit the
expected distribution.
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Anatomy of a test statistic
The general form of a test statistic is:

This construction is based on

1. identifying the difference between a point estimate and an expected value if the null hypothesis was true, and
2. standardizing that difference using the standard error of the point estimate.

These two ideas will help in the construction of an appropriate test statistic for count data.

point estimate − null value
SE of point estimate
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where k = total number of cells

Outcome Observed Expected

1 53,222 52,612

2 52,118 52,612

3 52,465 52,612

4 52,338 52,612

5 52,244 52,612

6 53,285 52,612

Total 315,672 315,672 24.73

Chi-Squared

When dealing with counts and investigating how far the observed counts are from the expected
counts, we use a new test statistic called the chi-square (  ) statistic.χ2

χ2 =
k

∑
i=1

(O− E)2

E

(O−E)2

E

= 7.07(53,222−52,612)2

52,612

= 4.64
(52,118−52,612)2

52,612

= 0.41(52,465−52,612)2

52,612

= 1.43
(52,338−52,612)2

52,612

= 2.57
(52,244−52,612)2

52,612

= 8.61(53,285−52,612)2

52,612
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Chi-Squared Distribution

Squaring the difference between the observed and the expected outcome does two things:

Any standardized difference that is squared will now be positive.
Differences that already looked unusual will become much larger after being squared.

In order to determine if the  statistic we calculated is considered unusually high or not we
need to first describe its distribution.

The chi-square distribution has just one parameter called degrees of freedom (df), which influences the shape, center,
and spread of the distribution.

χ2
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Degrees of freedom for a goodness of fit test

When conducting a goodness of fit test to evaluate how well the observed data follow an
expected distribution, the degrees of freedom are calculated as the number of cells (k) minus 1.

For dice outcomes, , therefore 

p-value =  is less than 0.001

df = k− 1

k = 6 df = 6 − 1 = 5

P(χ2df=5 > 24.67)
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Turns out...

The 1-6 axis is consistently shorter than the other two (2-5 and 3-
4), thereby supporting the hypothesis that the faces with one and
six pips are larger than the other faces.

Pearson's claim that 5s and 6s appear more often due to the
carved-out pips is not supported by these data.

Dice used in casinos have flush faces, where the pips are filled in
with a plastic of the same density as the surrounding material and
are precisely balanced.
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Recap: p-value for a chi-square test

The p-value for a chi-square test is defined as the tail area above the calculated test statistic.

This is because the test statistic is always positive, and a higher test statistic means a
stronger deviation from the null hypothesis.
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Assume we have a population of 100,000
where groups A and B are independent with

 and  and  (99% of
the population) and  (1% of the
population). We can sample from the
population (that includes groups A and B)
and from group B of sample sizes of 1,000
and 100, respectively. We can also calculate 
for group A independent of B.

propA <- .55 # Proportion for group A

propB <- .6 # Proportion for group B

pop.n <- 100000 # Population size

sampleA.n <- 1000

sampleB.n <- 100

pop <- data.frame(

    group = c(rep('A', pop.n * 0.99),

              rep('B', pop.n * 0.01) ),

    response = c(

        sample(c(1,0), 

               size = pop.n * 0.99, 

               prob = c(propA, 1 - propA), 

               replace = TRUE),

        sample(c(1,0), 

               size = pop.n * 0.01, 

               prob = c(propB, 1 - propB), 

               replace = TRUE) )

)

sampA <- pop[sample(nrow(pop), 

                    size = sampleA.n),]

sampB <- pop[sample(which(pop$group == 'B'), 

                    size = sampleB.n),]

Independence Between Groups

pA = .55 pB = .6 nA = 99, 000

nB = 1, 000

p̂
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Independence Between Groups (cont.)

 for the population sample

mean(sampA$response)

## [1] 0.557

 for the population sample, excluding group B

mean(sampA[sampA$group == 'A',]$response)

## [1] 0.5567839

 for group B sample

mean(sampB$response)

## [1] 0.6

p̂

p̂

p̂
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Independence Between Groups (cont.)
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1. What was the most important thing
you learned during this class?

2. What important question remains
unanswered for you?

One Minute Paper

https://forms.gle/ESBAdHRhzT65fW6c6
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