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What was the most important thing you
learned during this class?

What important question remains
unanswered for you?

One Minute Paper Results
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Weight of Books
allbacks <- read.csv('../course_data/allbacks.csv')

head(allbacks)

##   X volume area weight cover

## 1 1    885  382    800    hb

## 2 2   1016  468    950    hb

## 3 3   1125  387   1050    hb

## 4 4    239  371    350    hb

## 5 5    701  371    750    hb

## 6 6    641  367    600    hb

From: Maindonald, J.H. & Braun, W.J. (2007). Data Analysis and Graphics Using R, 2nd ed.
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Weights of Books (cont)
lm.out <- lm(weight ~ volume, data=allbacks)

^weight = 108 + 0.71volume

R2 = 80%
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Modeling weights of books using volume
summary(lm.out)

## 

## Call:

## lm(formula = weight ~ volume, data = allbacks)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -189.97 -109.86   38.08  109.73  145.57 

## 

## Coefficients:

##              Estimate Std. Error t value Pr(>|t|)    

## (Intercept) 107.67931   88.37758   1.218    0.245    

## volume        0.70864    0.09746   7.271 6.26e-06 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 123.9 on 13 degrees of freedom

## Multiple R-squared:  0.8026,    Adjusted R-squared:  0.7875 

## F-statistic: 52.87 on 1 and 13 DF,  p-value: 6.262e-06
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Weights of hardcover and paperback books
Can you identify a trend in the relationship between volume and weight of hardcover and paperback books?

Paperbacks generally weigh less than hardcover books after controlling for book's volume.
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Modeling using volume and cover type
lm.out2 <- lm(weight ~ volume + cover, data=allbacks)

summary(lm.out2)

## 

## Call:

## lm(formula = weight ~ volume + cover, data = allbacks)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -110.10  -32.32  -16.10   28.93  210.95 

## 

## Coefficients:

##               Estimate Std. Error t value Pr(>|t|)    

## (Intercept)  197.96284   59.19274   3.344 0.005841 ** 

## volume         0.71795    0.06153  11.669  6.6e-08 ***

## coverpb     -184.04727   40.49420  -4.545 0.000672 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 78.2 on 12 degrees of freedom

## Multiple R-squared:  0.9275,    Adjusted R-squared:  0.9154 

## F-statistic: 76.73 on 2 and 12 DF,  p-value: 1.455e-07
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Linear Model

�. For hardcover books: plug in 0 for cover.

�. For paperback books: put in 1 for cover.

^weight = 198 + 0.72volume− 184coverpb

^weight = 197.96 + 0.72volume− 184.05 × 0 = 197.96 + 0.72volume

^weight = 197.96 + 0.72volume− 184.05 × 1
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Visualizing the linear model
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Interpretation of the regression coef�cients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 197.9628 59.1927 3.34 0.0058

volume 0.7180 0.0615 11.67 0.0000

coverpb -184.0473 40.4942 -4.55 0.0007

Slope of volume: All else held constant, books that are 1 more cubic centimeter in volume tend to weigh about 0.72 grams
more.
Slope of cover: All else held constant, the model predicts that paperback books weigh 184 grams lower than hardcover
books.
Intercept: Hardcover books with no volume are expected on average to weigh 198 grams.

Obviously, the intercept does not make sense in context. It only serves to adjust the height of the line.
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Modeling Poverty
poverty <- read.table("../course_data/poverty.txt", h = T, sep = "\t")

names(poverty) <- c("state", "metro_res", "white", "hs_grad", "poverty", "female_house")

poverty <- poverty[,c(1,5,2,3,4,6)]

head(poverty)

##        state poverty metro_res white hs_grad female_house

## 1    Alabama    14.6      55.4  71.3    79.9         14.2

## 2     Alaska     8.3      65.6  70.8    90.6         10.8

## 3    Arizona    13.3      88.2  87.7    83.8         11.1

## 4   Arkansas    18.0      52.5  81.0    80.9         12.1

## 5 California    12.8      94.4  77.5    81.1         12.6

## 6   Colorado     9.4      84.5  90.2    88.7          9.6

From: Gelman, H. (2007). Data Analysis using Regression and Multilevel/Hierarchial Models.
Cambridge University Press.
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Modeling Poverty
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3-D scatter plot
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Predicting Poverty using Percent Female Householder
lm.poverty <- lm(poverty ~ female_house, data=poverty)

summary(lm.poverty)

## 

## Call:

## lm(formula = poverty ~ female_house, data = poverty)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -5.7537 -1.8252 -0.0375  1.5565  6.3285 

## 

## Coefficients:

##              Estimate Std. Error t value Pr(>|t|)    

## (Intercept)    3.3094     1.8970   1.745   0.0873 .  

## female_house   0.6911     0.1599   4.322 7.53e-05 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 2.664 on 49 degrees of freedom

## Multiple R-squared:  0.276,    Adjusted R-squared:  0.2613 

## F-statistic: 18.68 on 1 and 49 DF,  p-value: 7.534e-05
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% Poverty by % Female Household
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Another look at 

 can be calculated in three ways:

�. square the correlation coef�cient of x and y (how we have been calculating it)
�. square the correlation coef�cient of y and 
�. based on de�nition:

Using ANOVA we can calculate the explained variability and total variability in y.

R2

R2

ŷ

R2 =
explained variability in y

total variability in y
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Sum of Squares
anova.poverty <- anova(lm.poverty)

print(xtable::xtable(anova.poverty, digits = 2), type='html')

Df Sum Sq Mean Sq F value Pr(>F)

female_house 1.00 132.57 132.57 18.68 0.00

Residuals 49.00 347.68 7.10

Sum of squares of y:  → total variability

Sum of squares of residuals:  → unexplained variability

Sum of squares of x:  → explained variability

SSTotal =∑ (y− ȳ)2 = 480.25

SSError =∑ e2i = 347.68

SSModel = SSTotal − SSError = 132.57

R2 = = = 0.28
explained variability in y

total variability in y

132.57
480.25
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Why bother?

For single-predictor linear regression, having three ways to calculate the same value may
seem like overkill.

However, in multiple linear regression, we can't calculate  as the square of the correlation
between x and y because we have multiple xs.

And next we'll learn another measure of explained variability, adjusted , that requires the
use of the third approach, ratio of explained and unexplained variability.

R2

R2
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: Error varianceR2
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: Error variance (cont.)R2
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: Error variance (cont.)R2
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: Total (grey) and error (orange) varianceR2
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: Total (grey), error (orange), and regression (blue)R2
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: All variances

VisualStats::r_squared_shiny()

R2
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lm.poverty2 <- lm(poverty ~ female_house + white, data=poverty)

print(xtable::xtable(lm.poverty2), type='html')

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.5789 5.7849 -0.45 0.6577

female_house 0.8869 0.2419 3.67 0.0006

white 0.0442 0.0410 1.08 0.2868

anova.poverty2 <- anova(lm.poverty2)

print(xtable::xtable(anova.poverty2, digits = 3), type='html')

Df
Sum
Sq

Mean
Sq

F
value

Pr(>F)

female_house 1.000 132.568 132.568 18.745 0.000

white 1.000 8.207 8.207 1.160 0.287

Residuals 48.000 339.472 7.072

Predicting poverty using % female household & %
white

R2 = = = 0.29
explained variability in y

total variability in y

132.57 + 8.21
480.25
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Does adding the
variable white  to
the model add
valuable
information that
wasn't provided by
female_house ?

Unique information
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Collinearity between explanatory variables

poverty vs % female head of household

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.3094 1.8970 1.74 0.0873

female_house 0.6911 0.1599 4.32 0.0001

poverty vs % female head of household and % female household

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.5789 5.7849 -0.45 0.6577

female_house 0.8869 0.2419 3.67 0.0006

white 0.0442 0.0410 1.08 0.2868

Note the difference in the estimate for female_house .
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Collinearity between explanatory variables

Two predictor variables are said to be collinear when they are correlated, and this collinearity
complicates model estimation.
Remember: Predictors are also called explanatory or independent variables. Ideally, they
would be independent of each other.

We don't like adding predictors that are associated with each other to the model, because
often times the addition of such variable brings nothing to the table. Instead, we prefer the
simplest best model, i.e. parsimonious model.

While it's impossible to avoid collinearity from arising in observational data, experiments are
usually designed to prevent correlation among predictors
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 vs. adjusted 

Model Adjusted 

Model 1 (Single-predictor) 0.28 0.26

Model 2 (Multiple) 0.29 0.26

When any variable is added to the model  increases.
But if the added variable doesn't really provide any new information, or is completely unrelated, adjusted  does not
increase.

R2 R2

R2 R2

R2

R2
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Adjusted 

where n is the number of cases and p is the number of predictors (explanatory variables) in the
model.

Because p is never negative,  will always be smaller than .

 applies a penalty for the number of predictors included in the model.

Therefore, we choose models with higher  over others.

R2

R2
adj = 1 − ( × )SSerror

SStotal

n− 1
n− p− 1

R2
adj R2

R2
adj

R2
adj
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One Minute Paper

Complete the one minute paper:
https://forms.gle/ESBAdHRhzT65fW6c6

�. What was the most important thing you learned during this class?
�. What important question remains unanswered for you?
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